4 Mins
As developers, we are constantly looking for new and better ways to do things. Whether it’s an elegant, optimized piece of code or a feature-rich API we can share with fellow developers and engineers, there’s always something exciting and unexpected happening.
In our search for the latest and greatest, however, we often throw the baby out with the bathwater. Lest we forget the programming languages and paradigms of yesteryear.
Developers are discovering hidden uses of once-popular languages or simply rediscovering some of their greatest features. These developers are proving that just because a language may have lost its luster, it still might have great potential. The best software developers have a way of finding value in places no one else is looking.
As an interpreted, high-level, dynamically typed, multi-paradigm language Ruby is somewhat hard to define. In many ways, this is what has contributed to its lower ranking via the TIOBE which ranks programming languages based on trending usage. Ruby is capable of just about anything and programmers coming from Perl or Python should be able to pick it up while still being surprised by its features.
Ruby is object-oriented but is also capable of general functional programming which makes it unique amongst its peers. Its use has increased in recent years for reasons the designer of Ruby himself, Yukihiro Matsumoto, has described it as making programming fun. Now a somewhat ubiquitous skill, programming is commonly known as a laborious task without much flexibility.
Years ago, Ruby was created to tackle that very problem and to make coding fun again for people who had become accustomed to the skill but were no longer feeling inspired. Its popularity is well deserved and shows no signs of slowing down as more of the best software developers turn to Ruby to make coding fun and productive.
R is a formidable programming language that has surged in popularity for reasons that range from Covid research to statistical accuracy as the race for AI continues.
For the majority of the past ten years, Python has led the industry in data science as the primary language but R has recently usurped its reign through new usage from universities and laboratories around the world. R was originally designed by Ihaka and Gentleman in 1993 as an S data archive implementation that gained popularity through S news mailing lists.
Later, in 1995 a statistician named Martin Machler would convince Ihaka and Gentleman to make the R implementation open-source under the GNU. Once that happened it immediately experienced a meteoric rise in popularity that rivaled the most ambitious languages.
Its success can be linked to a few defining features that make it stand out from the rest of the crowd. R is capable of natively producing high-quality statistical graphics and is capable of incredible statistical accuracy.
These features, in addition to its over 18,000 libraries and 100 mirrors, make R an invaluable tool for data scientists and general programmers. Some would say it was only a matter of time but no matter the reason R is experiencing an incredible comeback surge.
While data structures and algorithms stay fairly constant, high-level programming languages are constantly in flux. Which programming languages we tend to use depend on the popular architectures, frameworks, and APIs out at the time.
Codebases before the 1980s and the advent of object-oriented languages were unwieldy. C and its predecessors became the most popular programming languages in the wake of this new idea of encapsulation and reuse. Now we are seeing a similar shift from monolithic architectures to lightweight cloud-native microservices. As such, languages like Python are rising up the ranks.
Share Article
Subscribe and get fresh content delivered right to your inbox
12 Mins
Hiring React Native developers? Consider reviewing their JavaScript and React Native expertise, including experience with state management, libraries, and native module integration. Evaluate their track record in building and deploying cross-platform applications, focusing on performance optimization and UI/UX best practices. Assess communication skills, problem-solving abilities, and cultural fit to foster collaboration. Finally, confirm familiarity with testing frameworks, version control workflows, and continuous integration processes to ensure development and project success.
Continue Reading
11 Mins
Discover how to create high-performing landing pages on Webflow with tested techniques such as clean UX design, compelling copywriting, powerful CTAs, and conversion-oriented layouts. This in-depth guide includes practical tips for optimizing load speed, mobile responsiveness, SEO, and analytics to boost traffic and sign-ups, or sales. From product launches to lead collection, design visually beautiful and successful landing pages that drive measurable outcomes without coding.
Continue Reading
9 Mins
In today's collaborative tech landscape, soft skills are as vital as coding expertise for software developers. Effective communication ensures clear articulation of ideas and seamless teamwork. Adaptability allows developers to navigate evolving technologies and shifting project requirements. Strong problem-solving skills enable innovative solutions to complex challenges. These interpersonal abilities not only enhance individual performance but also contribute to successful project outcomes and career advancement in the dynamic field of software development.
Continue Reading
Subscribe and get fresh content delivered right to your inbox
Prompt Engineer
AI Product Manager
Generative AI Engineer
AI Integration Specialist
Data Privacy Consultant
AI Security Specialist
AI Auditor
Machine Managers
AI Ethicist
Generative AI Safety Engineer
Generative AI Architect
Data Annotator
AI QA Specialists
Data Architect
Data Engineer
Data Modeler
Data Visualization Analyst
Data QA
Data Analyst
Data Scientist
Data Governance
Database Operations
Front-End Engineer
Backend Engineer
Full Stack Engineer
QA Engineer
DevOps Engineer
Mobile App Developer
Software Architect
Project Manager
Scrum Master
Cloud Platform Architect
Cloud Platform Engineer
Cloud Software Engineer
Cloud Data Engineer
System Administrator
Cloud DevOps Engineer
Site Reliability Engineer
Product Manager
Business Analyst
Technical Product Manager
UI UX Designer
UI UX Developer
Application Security Engineer
Security Engineer
Network Security Engineer
Information Security Analyst
IT Security Specialist
Cybersecurity Analyst
Security System Administrator
Penetration Tester
IT Control Specialist